EspC translocation into epithelial cells by enteropathogenic Escherichia coli requires a concerted participation of type V and III secretion systems.
نویسندگان
چکیده
EspC is a non-locus of enterocyte effacement (LEE)-encoded autotransporter protein secreted by enteropathogenic Escherichia coli (EPEC) that causes a cytopathic effect on epithelial cells, including cytoskeletal damage. EspC cytotoxicity depends on its internalization and functional serine protease motif. Here we show that during EPEC infection, EspC is secreted from the bacteria by the type V secretion system (T5SS) and then it is efficiently translocated into the epithelial cells through the type III secretion system (T3SS) translocon. By dissecting this mechanism, we found that EspC internalization during EPEC-host cell interaction occurs after 1 h, unlike purified EspC (8 h). LEE pathogenicity island is involved in specific EspC translocation as three espC-transformed attaching and effacing (AE) pathogens translocated EspC into the cells. A role for effectors and other factors involved in the intimate adherence encoded in LEE were discarded by using an exogenous EspC internalization model. In this model, an isogenic EPEC DeltaespC strain allows the efficient internalization of purified EspC. Moreover, isogenic mutants in T3SS were unable to translocate endogenous and exogenous EspC into epithelial cells, as EspC-EspA interaction is required. These data show for the first time the efficient delivery of an autotransporter protein inside the epithelial cells by EPEC, through cooperation between T5SS and T3SS.
منابع مشابه
A Novel Mechanism for Protein Delivery by the Type 3 Secretion System for Extracellularly Secreted Proteins
The type 3 secretion system (T3SS) is essential for bacterial virulence through delivering effector proteins directly into the host cytosol. Here, we identified an alternative delivery mechanism of virulence factors mediated by the T3SS, which consists of the association of extracellularly secreted proteins from bacteria with the T3SS to gain access to the host cytosol. Both EspC, a protein sec...
متن کاملThe Serine Protease EspC from Enteropathogenic Escherichia coli Regulates Pore Formation and Cytotoxicity Mediated by the Type III Secretion System
Type III secretion systems (T3SSs) are specialized macromolecular machines critical for bacterial virulence, and allowing the injection of bacterial effectors into host cells. The T3SS-dependent injection process requires the prior insertion of a protein complex, the translocon, into host cell membranes consisting of two-T3SS hydrophobic proteins, associated with pore-forming activity. In all d...
متن کاملA novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells.
Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, employ a type III secretion system to deliver effector proteins across the bacterial cell. In EPEC, four proteins are known to be exported by a type III secretion system_EspA, EspB and EspD required for subversion of host cell signal transduction pathways and a translocated intimin receptor (Tir) protein (formerly Hp90) wh...
متن کاملespC pathogenicity island of enteropathogenic Escherichia coli encodes an enterotoxin.
At least five proteins are secreted extracellularly by enteropathogenic Escherichia coli (EPEC), a leading cause of infant diarrhea in developing countries. However only one, EspC, is known to be secreted independently of the type III secretion apparatus encoded by genes located within the 35.6-kb locus of enterocyte effacement pathogenicity island. EspC is a member of the autotransporter famil...
متن کاملThe serine protease motif of EspC from enteropathogenic Escherichia coli produces epithelial damage by a mechanism different from that of Pet toxin from enteroaggregative E. coli.
EspC (Escherichia coli secreted protein C) of enteropathogenic E. coli (EPEC) shows the three classical domains of the autotransporter proteins and has a conserved serine protease motif belonging to the SPATE (serine protease autotransporters of Enterobacteriaceae) subfamily. EspC and its homolog Pet in enteroaggregative E. coli (EAEC) bear the same sequence within the serine protease motif, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular microbiology
دوره 10 10 شماره
صفحات -
تاریخ انتشار 2008